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Abstract

The versatile Bouc–Wen model has been used extensively to describe hysteretic phenomena in various fields of

engineering. Nevertheless, it is known that it exhibits displacement drift, force relaxation and nonclosure of hysteretic

loops when subjected to short unloading–reloading paths. Consequently, it locally violates Drucker’s or Ilyushin’s

postulate of plasticity. In this study, an effective modification of the model is proposed which eliminates these problems.

A stiffening factor is introduced into the hysteretic differential equation which enables the distinction between virgin

loading and reloading. Appropriate reversal points are utilized effectively to guide the entire process. It is shown that the

proposed modification corrects the nonphysical behavior of the model under short unloading–reloading paths without

affecting its response in all other cases. It is further demonstrated that the original and modified model exhibit significantly

different response under seismic excitation.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The Bouc–Wen model is a smooth phenomenological model that is often used to describe hysteretic
phenomena. It was introduced by Bouc [1] and further extended by Wen [2], who investigated the random
vibration of hysteretic systems. Although developed independently, it belongs to the class of endochronic
models, first introduced by Valanis [3], which use the notion of intrinsic time to describe the inelastic behavior
of materials.

The Bouc–Wen model has been employed successfully in many areas of engineering. Nevertheless, it is
known that it suffers from displacement drift, force relaxation and nonclosure of hysteretic loops when
subjected to short unloading–reloading paths. As a result, it locally violates Drucker’s [4] or Ilyushin’s [5]
postulate of plasticity. Drucker’s postulate states that the work done by an external added stress over a closed
stress loop is nonnegative, while Ilyushin’s postulate states that the total work done over a closed strain loop is
nonnegative. These postulates are of paramount importance in classical elastoplasticity as they imply the
normality rule for the plastic strain rate and the convexity of the yield surface in stress space. Ilyushin’s
postulate is less restrictive and characterizes the behavior of a very large class of materials, while resulting in
the same consequences as Drucker’s [6].
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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The aforementioned deficiencies of the Bouc–Wen model have been reported repeatedly in the literature,
e.g., [7–11]. To cope with this issue, a modification of the Bouc–Wen model was proposed by Casciati [8]. It
involves the introduction of an additional ‘‘counterclockwise’’ hysteretic term which becomes effective when
loading and gives rise to ‘‘negative’’ inelastic displacements. This modification achieves the reduction, yet not
the elimination of the problem [10–12]. Notably, these violations can also be reduced by using a large value of
the exponential parameter of the model. However, this approach results in an almost bilinear behavior and
offers no advantage in comparison to the simple bilinear model. In addition, it reduces the accuracy achieved
by using stochastic equivalent linearization techniques [13].

In this study, a simple modification is proposed which eliminates the aforementioned nonphysical
behavior of the Bouc–Wen model. Thus, the long-established conclusion that ‘‘when endochronic models
are adopted, local violations of the Drucker’s stability postulate cannot be avoided’’ (Casciati and Iwan [12])
is reconsidered. The modification focuses at the root of the problem, i.e., the reduced reloading stiffness,
by inserting a stiffening factor into the hysteretic differential equation. The modified model incorporates
the observation that reloading after partial unloading should follow the unloading path up to the reversal
point. Similar remedy was proposed by Riddell and Newmark [14] to correct the nonphysical behavior
of the model by Clough and Johnston [15]. It is shown that the proposed modification eliminates
the unrealistic behavior of the Bouc–Wen model with respect to short unloading–reloading paths while
leaving its behavior in full hysteretic loops practically unaffected. It is further shown that, when com-
pared to the original, the modified model may exhibit significantly different response under seismic
excitation.
2. Original model formulation

The restoring force F(t) of a single-degree-of-freedom system can be expressed as:

F ðtÞ ¼ a
F y

uy

uðtÞ þ ð1� aÞF yzðtÞ, (1)

where u(t) is the displacement, Fy the yield force, uy the yield displacement, a the ratio of post-yield to pre-yield
(elastic) stiffness and z(t) a dimensionless hysteretic parameter that obeys a single non-linear differential
equation with zero initial condition:

_zðtÞ ¼
1

uy

½A� jzðtÞjnðbþ sgnð _uðtÞzðtÞÞgÞ� _uðtÞ, (2)

where A, b, g, n are dimensionless quantities controlling the behavior of the model, sgnð�Þ is the signum
function and the overdot denotes the derivative with respect to time.
Fig. 1. Bouc–Wen model.
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It follows from Eq. (1) that the restoring force F(t) can be analyzed into an elastic and a hysteretic part as
follows:

F elðtÞ ¼ a
Fy

uy

uðtÞ (3)

F hðtÞ ¼ ð1� aÞFyzðtÞ (4)

Thus, the model can be visualized as two springs connected in parallel (Fig. 1) where ki ¼ F y=uy and
kf ¼ aki are the initial and post-yielding stiffness of the system.

3. Parameter constraints

The parameters of Bouc–Wen model are functionally redundant; there exists a multiplicity of parameter
vectors that produce an identical response for a given excitation [16]. Removing this redundancy is best
achieved by fixing parameter A to unity [16]. Henceforth, this constraint is assumed to hold.

4. Response

Recently, analytical expressions for the hysteretic response and dissipated energy of Bouc–Wen model were
derived by the authors [17]. These expressions can be employed for the quantification of the displacement drift,
the force relaxation and the violation of Ilyushin’s postulate, as demonstrated in the next section. Further,
they form the basis of the proposed modification as they provide the full unloading path in analytical form.
For sake of completeness, these expressions are reproduced here in brief.

The behavior of Bouc–Wen model can be distinguished into four cases depending on the sign of _u and z. In
illustration, the response under cyclic excitation is shown in Fig. 2, where the dotted line signifies the path of
the elastic response. Points A and C signify sign reversal of velocity _u whereas points B and D signify sign
reversal of hysteretic force Fh or, equivalently, of hysteretic parameter z.

It was shown that the displacement u is associated with the hysteretic parameter z in terms of Gauss’
hypergeometric function 2F 1ða; b; c;wÞ [17]. In the non-trivial case of bag, the following relation holds:

u� u0

uy

¼ z2F 1 1;
1

n
; 1þ

1

n
; qjzjn

� �����
z

z0

, (5)

where q ¼ bþ sgnð _uzÞg and u0, z0 are the initial values of the displacement and hysteretic parameter,
respectively. Eq. (5) can be used with arbitrary values of n, b and g provided that q does not change during the
transition under consideration. Proper evaluation techniques for the hypergeometric function are provided in
Appendix A while simpler relations will be produced for specific values of the exponential parameter. Thus,
for n ¼ 1 Eq. (5) is solved analytically for z as follows [17]:

z ¼
sgnðzÞ þ ðqz0 � sgnðzÞÞe�sgnðzÞqðu�u0Þ=uy

q
(6)
u

Fig. 2. Response of Bouc–Wen model under cyclic excitation.
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Table 1

Values of q and sgn(z) per segment.

Segment q sgn(z)

AB b�g +1

BC b+g �1

CD b�g �1

DA b+g +1
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For n ¼ 2, z is given by Ref. [17]:

z ¼
tanhð

ffiffiffi
q
p
ðu� u0Þ=uy þ arctanhð

ffiffiffi
q
p

z0ÞÞffiffiffi
q
p , (7)

where tanh( � ), arctanh( � ) are the normal and inverse hyperbolic tangent, respectively. In Eq. (7),
ffiffiffi
q
p

may be
complex but the result is real. Special attention must be paid with respect to the values of q and sgn(z) per
segment (Table 1).

In the special case of b ¼ g, the unloading branches are straight lines and integration of Eq. (2) yields:

z ¼
ðu� u0Þ

uy

þ z0 (8)

Eq. (8) is independent of n. The loading branches are covered by Eq. (5).
5. Deficiencies of original model

5.1. Displacement drift

The hysteretic spring of the model (Fig. 1) exhibits displacement drift when cycled between two unequal
forces Fh

1, Fh
2 with Fh

maxXF h
14F h

2X0. Referring to Fig. 3a, the displacement drift d can be quantified easily for
arbitrary values of n, b and g by employing Eq. (5) in the transition between points A! B! D. Note that
Fh

max ¼ ð1� aÞF y, zA ¼ zD ¼ F h
1=Fh

max, zB ¼ Fh
2=F h

max, while FAaFD due to the contribution of the elastic
spring. When n ¼ 1, the drift is expressed as:

d1 ¼ uy

1

qn

ln
F h

max � qnF h
1

F h
max � qnF h

2

 !
þ

1

qp

ln
Fh

max � qpFh
2

Fh
max � qpFh

1

 ! !
, (9)

where qp ¼ bþ g, qn ¼ b� g and lnð�Þ is the natural logarithm. When n ¼ 2, the drift is given by:

d2 ¼ uy

arctanh

ffiffiffiffiffi
qn

p
Fh

2

F h
max

 !
� arctanh

ffiffiffiffiffi
qn

p
F h

1

F h
max

 !
ffiffiffiffiffi
qn

p þ

arctanh

ffiffiffiffiffi
qp
p

Fh
1

Fh
max

 !
� arctanh

ffiffiffiffiffi
qp
p

Fh
2

Fh
max

 !
ffiffiffiffiffi
qp
p

0
BBBB@

1
CCCCA (10)

In case b ¼ g, the unloading branch is covered by Eq. (8) and hence Eqs. (9) and (10) are modified,
respectively, as follows:

d�1 ¼ uy

Fh
2 � F h

1

Fh
max

þ
1

qp

ln
F h

max � qpF h
2

F h
max � qpF h

1

 ! !
(11)
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Fig. 3. (a) Displacement drift and (b) force relaxation of hysteretic spring.
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d�2 ¼ uy

F h
2 � Fh

1

Fh
max

þ

arctanh

ffiffiffiffiffi
qp
p

Fh
1

Fh
max

 !
� arctanh

ffiffiffiffiffi
qp
p

F h
2

F h
max

 !
ffiffiffiffiffi
qp
p

0
BBBB@

1
CCCCA (12)

5.2. Force relaxation

The hysteretic spring exhibits force relaxation when cycled between two unequal displacements u1, u2 with
u14u2. Referring to Fig. 3b, the force relaxation f can be quantified by utilizing Eqs. (6) and (7) over the
transition A! B! C in which the hysteretic force does not change sign. When n ¼ 1, it is given by:

f 1 ¼
ðep � enÞF

h
1

ep

þ
Fh

maxðen � 1Þ

epqn

þ
F h

maxð1� epÞ

epqp

, (13)

where ep ¼ expðqpDu=uyÞ, en ¼ expðqnDu=uyÞ and Du ¼ u1 � u2. For n ¼ 2, the force relaxation is expressed as:

f 2 ¼ F h
1 �

Fh
maxffiffiffiffiffi
qp
p tanh

ffiffiffiffiffi
qp
p Du

uy

� arctanh

qp tanh

ffiffiffiffiffi
qn

p
Du

uy

� arctanh

ffiffiffiffiffi
qn

p
Fh

1

Fh
max

 ! !
ffiffiffiffiffiffiffiffiffi
qpqn
p

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA (14)

In case b ¼ g the unloading branch is covered by Eq. (8) and hence Eqs. (13) and (14) are modified,
respectively, as follows:

f �1 ¼
DuF h

max

epuy

þ
ðep � 1ÞðqpFh

1 � F h
maxÞ

qpep

(15)

f �2 ¼ Fh
1 �

F h
maxffiffiffiffiffi
qp
p tanh

ffiffiffiffiffi
qp
p Du

uy

þ arctanh
ffiffiffiffiffi
qp

p Fh
1

F h
max

�
Du

uy

 ! ! !
(16)

5.3. Ilyushin’s postulate

Regarding the Bouc–Wen model, the work of the elastic spring over a closed strain loop is zero. Thus, in
violation of Ilyushin’s postulate, the total work W over the transition A! B! C of Fig. 3b is attributed to
the hysteretic spring only and it is expressed by the shaded area with a negative sign. It is noted that W is not

equal to the dissipated energy [18]. If it were, the model would violate the second law of thermodynamics [19].
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The total work W over the transition A! B! C in which the hysteretic force does not change sign is
given by:

W ¼ F h
maxuy

Z zB

zA

z

1� ðb� gÞzn
dzþ

Z zC

zB

z

1� ðbþ gÞzn
dz

� �
(17)

When n ¼ 1, the total work is expressed as:

W 1 ¼ Fh
maxuy

qnðzA � zBÞ þ ln
1� qnzA

1� qnzB

� �
q2

n

þ

qpðzB � zCÞ þ ln
1� qpzB

1� qpzC

 !

q2
p

0
BBBB@

1
CCCCA, (18)

where zA ¼ Fh
1=Fh

max and zB, zC are determined by successive application of Eq. (6). For n ¼ 2, the total work
is given by:

W 2 ¼
Fh

maxuy

2

1

qn

ln
1� qnz2A
1� qnz2B

� �
þ

1

qp

ln
1� qpz2B

1� qpz2C

 ! !
, (19)

where zB, zC are determined by successive application of Eq. (7).
In case b ¼ g, the unloading branch is covered by Eq. (8) and hence Eqs. (18) and (19) are modified,

respectively, as follows:

W �
1 ¼ Fh

maxuy

z2B � z2A
2
þ

qpðzB � zCÞ þ ln
1� qpzB

1� qpzC

 !

q2
p

0
BBBB@

1
CCCCA (20)

W �
2 ¼

Fh
maxuy

2
z2B � z2A þ

1

qp

ln
1� qpz2B

1� qpz2C

 ! !
(21)

6. Modified model

In this section, an efficient modification is proposed for the correction of the nonphysical behavior of
Bouc–Wen model. The modification is built progressively and the reasoning behind each step is discussed.

The root of the problem is that the model predicts reduced loading stiffness as compared to the unloading
one at the same point. Thus, a mechanism for controlling the stiffness between these two extreme values is
needed. To this purpose, Eq. (2) is modified as follows:

_z ¼
1

uy

½A� jzjnðbþ ðsgnð _uzÞ �2Hð _uzÞRsðu; zÞÞgÞ� _u, (22)

where the underlined expression is the modification, Rsðu; zÞ 2 ½0; 1� is a stiffening factor and Hð�Þ is the
Heaviside function defined herein as:

HðxÞ ¼
1;x40

0;xp0

(
. (23)

Note that definition (23) differs from the one in [20] at x ¼ 0. Due to the Heaviside function, the unloading
branches of the modified model remain identical to those of the original model. When loading or reloading,
factor Rsðu; zÞ controls the transition between loading (reduced) stiffness and unloading (increased) stiffness.
For Rs ¼ 0, Eq. (22) reduces to Eq. (2) and the proposed modified model is identical to the original one. For
Rs ¼ 1, the loading stiffness becomes equal to that of unloading at the same point.
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Next, a consistent formulation of stiffening factor Rs is considered. By virtue of Eqs. (5) and (8), the full
unloading path from a reversal point is known a priori in analytical form. For bag this path is curved,
whereas for b ¼ g it is a straight line. Setting Rs equal to unity along this path has the desired effect that partial
unloading followed by reloading will guide the hysteretic response exactly on the unloading path up to the
reversal point. Upon there, factor Rs should revert to zero to allow for further loading with normal (reduced)
stiffness. Finally, factor Rs should diminish in regions away from the unloading path so that normal behavior
of Bouc–Wen model remains unaffected.

Based on these observations, a suitable expression of Rsðu; zÞ is defined. In illustration, we assume that
Pþðuþp ; z

þ
p Þ is a reversal point in the upper half-plane of the u– z space ðzþp 40Þ. Symmetric formulation with

respect to the origin of the reference axes is assumed for the lower half-plane. During reloading, it is assumed
that the current state is represented by point Aðu; zÞ with 0pzozþp (Fig. 4). Point Cðuc; zÞ is the corresponding
point of the unloading path. By employing Eqs. (5) and (8), uc is given by Eqs. (24) and (25) for gab and
g ¼ b, respectively, as:

ucðzÞ ¼ uyz2F1 1;
1

n
; 1þ

1

n
; ðb� gÞzn

� �����
z

zþp

þ uþp (24)

u�c ðzÞ ¼ ðz� zþp Þuy þ uþp (25)

A natural way of controlling stiffness in the u�z space is based on the slopes in the same space. We denote sa

the slope of line AP+, as opposed to the ‘‘critical’’ slope sc of line CP+. Referring to Fig. 4, it follows that
sa=sc ¼ ðu

þ
p � ucðzÞÞ=ðuþp � uÞ. Based on this ratio, a simple expression for the factor Rs is proposed as:

Rsðu; zÞ ¼ Hðzþp � zÞHðucðzÞ � uÞ
uþp � ucðzÞ

uþp � u

 !p

, (26)

where pX1 is a constant. As point A approaches point C from the left, factor Rs increases and approaches
unity. When points A and C coincide, Rs ¼ 1 and loading follows the unloading path exactly. Thus, the
unloading path P+

�F is a ‘‘horizon’’, i.e., it cannot be crossed. When z is greater than zþp or u is greater than
uc, the stiffening effect disappears due to the Heaviside functions of Eq. (26). Parameter p controls the
intensity of stiffening to the left of the unloading path. For increased values of p, stiffening is concentrated
close to the unloading path and diminished everywhere else. In general, it was observed that values of p

between 1.0 and 2.0 produce realistic hysteretic behavior.
To demonstrate the effect of the proposed modification, we consider a system with n ¼ 2, b ¼ 0.1, g ¼ 0.9

which is subjected to virgin loading. Unloading occurs when uþp ¼ 1:5uy and zþp ffi 0:905. We impose a
displacement to the negative direction and then back to the positive direction. Applying the stiffening rule with
p ¼ 2 has a profound effect on the response of the hysteretic spring. In illustration, Fig. 5 shows cases (a)–(d)
where loading in the negative direction reaches uy, 0.5uy, 0 and �1.5uy, respectively. It is demonstrated that the
differences in the response depend on the intensity of the reversal. In cases (a,b and c), the nonphysical
behavior of Bouc–Wen model is corrected, whereas in case (d) the response of the original and modified
model are practically identical. In case a1, application of Eqs. (10), (14) and (19) yield displacement
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Fig. 5. Stiffening effect in u– z space: original model (left), modified model (right) (n ¼ 2, b ¼ 0.1, g ¼ 0.9, uþp ¼ 1:5uy, zþp � 0:905, p ¼ 2).
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Fig. 6. Contour plot of Rs with n ¼ 2, b ¼ 0.1, g ¼ 0.9, uþp ¼ 1:5uy, zþp � 0:905 and (a) p ¼ 1.0, (b) p ¼ 2.0.
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drift of d ffi 0:728uy, force relaxation of f ffi 0:257F h
max and violation of Ilyushin’s postulate of W ffi

�0:044756Fh
maxuy, respectively.

In addition, Fig. 6 shows the contour plots of stiffening factor Rs in case of p ¼ 1 and p ¼ 2. These plots are
fully defined upon establishment of reversal point Pþð1:5uy; 0:905Þ. The darker a point is, the more intense is
the stiffening effect at that point during reloading. The edge of the darkest area is the unloading path,
along which Rs ¼ 1 irrespectively of p. It is shown that for p ¼ 2 stiffening is concentrated close to the
unloading path.

7. Selection of reversal point

The effectiveness of the proposed modification was demonstrated for the case of a single reversal point.
Nevertheless, for a system under random excitation a critical issue arises regarding which reversal point should
be used. In order to facilitate algorithmic implementation, the following investigation is based on discrete time
instants ti with i ¼ 0; 1; 2; . . . and t0 ¼ 0. All expressions refer to the upper half-plane of the u�z space;
symmetric formulation with respect to the origin of the reference axes is assumed for the lower half-plane.

As first attempt, we may employ the last observed reversal point. The set of time instants that correspond to
reversals up to time ti (with iX2) can be written as:

Tþi ¼ ftjjuðtj�1ÞouðtjÞ ^ uðtjÞ4uðtjþ1Þ ^ zðtjÞ40; j ¼ f1; 2; . . . ; i � 1gg (27)

Therefore, the set Tþi contains all time instants upto ti for which the displacement exhibits local maxima and
the hysteretic parameter is positive. The time instant of the last observed reversal point is given simply as:

tþi ¼ maxTþi (28)

However, this formulation may cancel the desired stiffening effect when multiple reversals of small
amplitude are involved. In illustration, we consider a system with the following properties: b ¼ 0:1, g ¼ 0:9,
a ¼ 0:10, n ¼ 2:0, F y ¼ 2:86 kN, uy ¼ 0:111m, m ¼ 13 kNs2/m and p ¼ 2.0. For the following analyses, the
Northridge TAR090 excitation is used [21]. The aforementioned undesired behavior is manifested in details A
and B of Fig. 7.

A different approach involves the reversal point that maximizes displacement. The set of these time instants
is given as:

T̄
þ

i ¼ ftj 2 Tþi juðtjÞXuðtkÞ; 8tk 2 Tþi g � Tþi (29)

If T̄
þ

i contains more than one element, the last time instant that maximizes z is selected:

tþi ¼ maxftj 2 T̄
þ

i jzðtjÞXzðtkÞ; 8tk 2 T̄
þ

i g (30)
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Fig. 7. Response under the Northridge TAR090 [21] excitation using last observed reversal points.

Fig. 8. Response under the Northridge TAR090 [21] excitation using maximum displacement reversal points.
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This formulation may not be effective for all cases, as shown in Fig. 8. Although the model behaves as
expected when loading in the positive direction (Detail C), it is shown that the stiffening effect in detail D is
inadequate because the current minimum displacement reversal point lies in detail E.

In order to cover all cases, one has to take into account multiple reversal points. Therefore, it is important
to investigate the conditions under which a reversal point should be considered ‘‘active’’.

When a reversal point Pþðuþp ; z
þ
p Þ is established, a symmetric zone is defined in u–z space where

z 2 ð�zþp ; z
þ
p Þ. Within this zone, P+ is ‘‘active’’ in the sense that any single unloading–reloading path of the

original Bouc–Wen model falls below P+ (Fig. 9). At the limit, a path for which the hysteretic parameter

varies in the sequence zþp !�zþp ! zþp will be guided to P+ exactly. The proof is provided in Appendix B.

Based on these observations, stiffening is required for excursions within this zone, so that the path of the
hysteretic response will be guided either through or over P+. If z somehow falls outside this zone, P+ is not
considered active for the remaining process. Based on this formulation, the set of ‘‘active’’ reversal points at
time ti is defined as:

T̃
þ

i ¼ ftj 2 Tþi jzðtkÞ 2 ð�zðtjÞ; zðtjÞÞ; 8tk 2 ftjþ1; tjþ2; . . . ; tigg � Tþi (31)

which contains the time instants that correspond to reversals for which the hysteretic parameter remains
within their respective ‘‘active’’ zone up to ti. At each time instant ti, the stiffening factors that correspond to
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Fig. 9. ‘‘Active’’ zone of reversal point P+ (n ¼ 2, b ¼ 0.1, g ¼ 0.9, uþp ¼ 1:5uy, zþp � 0:905).

Fig. 10. Response under the Northridge TAR090 [21] excitation using multiple reversal points.
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all tþi 2 T̃
þ

i are evaluated and the maximum one is used. When employing this definition in the previous

example, it is observed that all intermediate reversals are correctly ignored (Fig. 10). These include the
reversals at the end of the event, which cause considerable drift in the original model.

Therefore, by using relations (22), (26) and (31) one can correct all aforementioned deficiencies which were
attributed to the Bouc–Wen model in the past.

Programming of the proposed modification is straightforward and is implemented at each integration step
by (a) adding the stiffening term into the differential equation, (b) evaluating and employing the maximum
stiffening factor Rs that corresponds to ‘‘active’’ reversal points using relation (26) and (c) updating the set of
‘‘active’’ reversal points. The latter is accomplished effectively by adding into the set the new reversal points
and removing existing ones that have become ‘‘inactive’’.
8. Comparison of original and modified model

Based on the previous results, it is evident that the overall response of the modified model may be
considerably different from that of the original. The differences depend on the number and extent of short
reversals, especially those that occur when the hysteretic spring has yielded in either direction. Referring to
Fig. 10, this observation is clear when loading in the positive direction.
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In addition, for design purposes we are interested in the peak values of certain time histories. We measure
the relative error of the peak values as follows:

� ¼
maxðȳðtÞÞ �maxðyðtÞÞ

maxðyðtÞÞ
, (32)

where y(t) and ȳðtÞ are the time histories corresponding to the original and modified model, respectively, and
maxð�Þ denotes the maximum absolute value.

We consider a specific system with the following properties: b ¼ 0.1, g ¼ 0.9, a ¼ 0.10, n ¼ 2.0,
Fy ¼ 2:86 kN, uy ¼ 0:111m. Regarding the modified model, the formulation with multiple reversal points is
employed with p ¼ 2.0. The plastic period is controlled by changing the mass of the system. For a selection of
20 strong motion recordings [21] (Table 2), Figs. 11 and 12 show the envelope of the relative error in the peak
displacement and peak hysteretic energy, respectively. The results have been filtered to include cases for which
Table 2

Strong motion recordings taken from PEER [21].

# Title PGA (g) PGV (cm/s) PGD (cm)

1 ChiChi CHY028 N 0.821 67.0 23.28

2 ChiChi CHY028 W 0.653 72.8 14.68

3 ChiChi TCU084 N 0.417 45.6 21.27

4 ChiChi TCU084 W 1.157 114.7 31.43

5 Kobe Takatori TAK000 0.611 127.1 35.77

6 Kobe Takatori TAK090 0.616 120.7 32.72

7 Northridge Rinaldi RRS228 0.838 166.1 28.78

8 Northridge Rinaldi RRS318 0.472 73.0 19.76

9 Northridge Tarzana TAR090 1.779 113.6 33.22

10 Northridge Tarzana TAR360 0.990 77.6 30.45

11 Kocaeli Duzce DZC180 0.312 58.8 44.11

12 Kocaeli Duzce DZC270 0.358 46.4 17.61

13 Tabas TAB-LN 0.836 97.8 36.92

14 Tabas TAB-TR 0.852 121.4 94.58

15 Imperial Valley I-ELC180 0.313 29.8 13.32

16 Imperial Valley I-ELC270 0.215 30.2 23.91

17 Loma Prieta GPC000 0.563 94.8 41.18

18 Loma Prieta GPC090 0.605 51.0 11.50

19 Erzikan ERZ-NS 0.515 83.9 27.35

20 Erzikan ERZ-EW 0.496 64.3 22.78

Fig. 11. Relative peak displacement error.
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Fig. 12. Relative peak hysteretic energy error.
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maxðuðtÞÞXuy or maxðūðtÞÞXuy. Thus, only the results that involve an appreciable level of hysteretic damping
are displayed. It is observed that the peak values of the modified model may be smaller or larger than that of
the original one. For the excitations considered herein, the relative error may reach 38% and 24% for the peak
displacement and peak hysteretic energy, respectively.

It is noted that the difference in the overall response may or may not be reflected to the peak values.
For example, it frequently results that the difference in the peak displacement between the original
and modified model is exactly zero, as this occurs during virgin loading i.e., in the absence of any stiffening
effect.
9. Conclusions

A simple modification of the versatile Bouc–Wen model is proposed which results in the correction of its
nonphysical behavior when subjected to short unloading–reloading paths. This behavior is manifested as
displacement drift, force relaxation and nonclosure of hysteretic loops, which result into violation of
Drucker’s or Ilyushin’s postulate. These phenomena are quantified based on analytical relations that were
derived recently by the authors [17]. The proposed modification is based on the introduction of a suitable
stiffening factor which is inserted directly into the hysteretic differential equation. This results in a distinction
between virgin loading and reloading, a feature that is absent in the original model. The notion of ‘‘active’’
reversal points is defined which controls the entire process effectively. The proposed modifications are
explained in detail and their effects are demonstrated and discussed. Finally, it is shown that the original and
modified model may exhibit significantly different response under seismic excitation.

The proposed modification can be applied to extended Bouc–Wen models that also take into account
degradation phenomena, e.g. [23]. This is feasible since the modification focuses in the hysteretic spring only
and it is fully formulated within the u–z space.
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Appendix A. Evaluation of Gauss’ hypergeometric function

The hypergeometric function is the analytical continuation of the so-called hypergeometric series [20]:

2F1ða; b; c;wÞ ¼
X1
n¼0

ðaÞnðbÞn
ðcÞn

wn

n!
, (33)

where ðwÞn ¼ wðwþ 1Þ . . . ðwþ n� 1Þ; ðwÞ0 ¼ 1 is Pochhammer’s symbol and n! the factorial of n.
In this study, one is interested in the evaluation of 2F1ða; b; c;wÞ for real values of w 2 ð�1; 1Þ. Although the

circle of convergence of series (33) is the unit circle |w| ¼ 1, its rate of convergence is satisfactory only for
|w|p1/2 [22]. For wA(1/2,1), the values are produced by linear transformation. In the cases presented herein,
c ¼ a+b and hence the following formula is used [20]:

2F1ða; b; aþ b;wÞ ¼
Gðaþ bÞ

GðaÞGðbÞ

X1
n¼0

ðaÞnðbÞn

ðn!Þ2
½2cðnþ 1Þ � cðaþ nÞ � cðbþ nÞ � lnð1� wÞ�ð1� wÞn, (34)

where Gð�Þ is the Gamma function, cð�Þ the Psi (Digamma) function and lnð�Þ the natural logarithm. In general,
Eq. (34) exhibits satisfactory rate of convergence even when evaluating the limit of the hypergeometric
function as w-1�. Finally, for wA(�N,�1/2), the following linear transformation is used [20]:

2F1ða; b; c;wÞ ¼ ð1� wÞ�a
2F1 a; c� b; c;

w

w� 1

� �
(35)

The new function evaluation falls into one of the cases covered by Eqs. (33) and (34).

Appendix B. Proof

Regarding Fig. 9, we will prove that, beginning at Pþðuþp ; z
þ
p Þ, a hysteretic loop for which z varies in the

sequence zþp !�zþp ! zþp will be guided to P+ exactly.

We assume that the final point is P̂
þ
ðûþp ; z

þ
p ÞaPþ. The hysteretic loop can be analyzed into the sequence

Pþ ! P1ðu1; 0Þ ! P2ðu2;�zþp Þ ! P3ðu3; 0Þ ! P̂
þ
. By successive application of Eq. (5), one obtains:

u1 � uþp

uy

¼ 0� zþp 2F 1 1;
1

n
; 1þ

1

n
; ðb� gÞjzþp j

n

� �
(36)

u2 � u1

uy

¼ �zþp 2F 1 1;
1

n
; 1þ

1

n
; ðbþ gÞj � zþp j

n

� �
� 0 (37)

u3 � u2

uy

¼ 0� �zþp 2F1 1;
1

n
; 1þ

1

n
; ðb� gÞj � zþp j

n

� �� 	
(38)

ûþp � u3

uy

¼ zþp 2F 1 1;
1

n
; 1þ

1

n
; ðbþ gÞjzþp j

n

� �
� 0 (39)

By adding Eqs. (36)–(39) by parts, one obtains ûþp ¼ uþp . Thus, P̂
þ
¼ Pþ.
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